Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(4)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113112

RESUMEN

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Microbiota , Ratones , Humanos , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Triptófano , Artritis Reumatoide/genética , Colágeno
2.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873395

RESUMEN

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.

3.
Res Sq ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37720032

RESUMEN

Previous studies have identified significant alterations in intestinal carnitine metabolism in mice with collagen-induced arthritis (CIA), potentially linking bacterial dysbiosis with autoimmunity. Bacterial trimethylamine (TMA) lyases metabolize dietary carnitine to TMA, which is oxidized in the liver to trimethylamine-N-oxide (TMAO). TMAO is associated with inflammatory diseases, such as atherosclerosis, whose immunologic processes mirror that of rheumatoid arthritis (RA). Therefore, we investigated the possibility of ameliorating CIA by inhibiting TMA lyase activity using 3,3-dimethyl-1-butanol (DMB) or fluoromethylcholine (FMC). During CIA, mice were treated with 1% vol/vol DMB, 100mg/kg FMC, or vehicle. DMB-treated mice demonstrated significant (>50%) reduction in arthritis severity compared to FMC and vehicle-treated mice. However, in contrast to FMC, DMB treatment did not reduce cecal TMA nor circulating TMAO concentrations. Using gas chromatography, we confirmed the effect of DMB is independent of TMA lyase inhibition. Further, we identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut), which also significantly reduced disease and proinflammatory cytokines in CIA mice. Altogether, our study suggests that DMB the immunomodulatory activity of DMB and/or its metabolites are protective in CIA. Elucidating its target and mechanism of action may provide new directions for RA therapeutic development.

4.
Pediatr Rheumatol Online J ; 21(1): 36, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072782

RESUMEN

BACKGROUND: Sarcoidosis is characterized by non-caseating epithelioid granulomas in various tissues throughout the body, most commonly the lung. Non-caseating granulomas may be seen in skeletal muscle, though typically asymptomatic and under-recognized. While rare in children, there is a need to better characterize the disease and its management. Here we present a 12-year-old female with bilateral calf pain who was ultimately found to have sarcoid myositis. CASE PRESENTATION: A 12-year-old female presented to rheumatology with significantly elevated inflammatory markers and isolated lower leg pain. MRI of the distal lower extremities demonstrated extensive bilateral myositis with active inflammation, atrophy, and to a lesser extent fasciitis. This distribution of myositis in a child garnered a broad differential requiring a systematic evaluation. Ultimately, muscle biopsy revealed non-caseating granulomatous myositis with perivascular inflammation, extensive muscle fibrosis, and fatty replacement of the muscle with a CD4+ T cell predominant, lymphohistiocytic infiltrate consistent with sarcoidosis. Review of histopathology from age 6 of an extraconal mass resected from her right superior rectus muscle further confirmed the diagnosis. She had no other clinical symptoms or findings of sarcoidosis. The patient improved significantly with methotrexate and prednisone, though flared again after self-discontinuation of medications and was subsequently lost to follow-up. CONCLUSION: This is the second reported case of granulomatous myositis associated with sarcoidosis in a pediatric patient, and the first to present with a chief complaint of leg pain. Increased knowledge of pediatric sarcoid myositis within the medical community will enhance recognition of the disease, improve the evaluation of lower leg myositis, and advance outcomes for this vulnerable population.


Asunto(s)
Granuloma , Miositis , Sarcoidosis , Niño , Femenino , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , Fascitis/diagnóstico , Fibrosis , Granuloma/diagnóstico , Granuloma/patología , Extremidad Inferior/patología , Miositis/diagnóstico , Miositis/patología , Dolor/etiología , Sarcoidosis/diagnóstico , Sarcoidosis/patología
5.
Sci Transl Med ; 14(668): eabn5166, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288282

RESUMEN

The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.


Asunto(s)
Artritis Reumatoide , Inmunoglobulina A , Ratones , Animales , Autoanticuerpos , Autoantígenos , Inmunoglobulina G , Anticuerpos Monoclonales
6.
Cell Host Microbe ; 29(5): 726-739.e5, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33957082

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary metabolic genes, which associate with anti-CCP status, suggesting that these phages directly influence the metabolic and immunomodulatory capability of the microbiota. This work sets the stage for the use of phages as preclinical biomarkers and provides insight into a possible microbial-based causation of RA disease development.


Asunto(s)
Artritis Reumatoide/virología , Bacteriófagos/aislamiento & purificación , Intestinos/virología , Adulto , Anciano , Anticuerpos Antiproteína Citrulinada/sangre , Artritis Reumatoide/sangre , Artritis Reumatoide/metabolismo , Bacteriófagos/clasificación , Bacteriófagos/genética , Femenino , Humanos , Masculino , Microbiota , Persona de Mediana Edad , Filogenia , Factores de Riesgo
7.
Best Pract Res Clin Rheumatol ; 33(6): 101492, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32151461

RESUMEN

Mucosal surfaces are a unique symbiotic environment between a host and a vast and diverse ecology of microbes. These microbes have great immunomodulatory potential with respect to the host organism. Indeed, the mucosal immune system strikes a delicate balance between tolerance of commensal organisms and overt inflammation to ward off pathogens. Disruptions of the microbial ecology at mucosal surfaces has been described in a vast number of different human disease processes including many forms of arthritis, and the resulting implications are still being understood to their fullest. Herein, we review the current state of knowledge in microbe-host interactions as it relates to the development of arthritis through bacterial translocation, bacterial metabolite production, education of the immune response, and molecular mimicry.


Asunto(s)
Artritis , Inflamación , Microbiota , Artritis/microbiología , Humanos , Tolerancia Inmunológica , Inmunidad Mucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...